

APPLICATIONS OF MODEL-BASED SYSTEMS ENGINEERING METHODS TO

VEHICLE AND SUBSYSTEM DESIGN AND OPTIMIZATION

Dr. Larry Michaels, Shane Halbach, Neeraj Shidore, Aymeric Rousseau
Argonne National Laboratory

Ground Vehicle Systems Engineering and Technology Symposium
Systems Engineering Mini-Symposium

Approved For Public Release

Summary
This paper discusses the latest techniques in vehicle modeling and simulation to support ground
vehicle performance and fuel economy studies, enable system design optimization, and facilitate
detailed control system design. The Autonomie software package, developed at Argonne
National Laboratory, is described with emphasis on its capabilities to support Model-in-the-
Loop, Software-in-the-Loop (SIL), Component-in-the-Loop (CIL), and Hardware-in-the-Loop
simulations.

Autonomie supports Model-Based Systems Engineering, which is growing in use as ground
vehicles become more sophisticated and complex, with many more subsystems interacting within
the vehicle and the environmental conditions in which the vehicles operate becoming more
challenging and varied. With the advent of hybrid powertrains, the additional dimension of
vehicle architecture has become one of the design variables that must be considered. This
complexity results in the need for a simulation tool that is capable of incorporating systems of
various levels of detail and fidelity, as well as handling scalable simulation tasks, from individual
component models up to complete vehicles.

Autonomie automates the process of building system simulations comprising the models chosen
by the user, and then executes those simulations, producing tabular and graphical results. This
capability eliminates the need for many of the manual steps that are normally encountered when
creating and running a system simulation model.

Specific applications are described to show the applicability of Autonomie to a wide range of
problems. These applications highlight the use of Autonomie for SIL-based detailed control
design using compiled production control software, ground vehicle performance and fuel
economy optimization studies, and CIL testing at Argonne National Laboratory.

Introduction
Model-Based Systems Engineering (MBSE) improves quality, shortens development time,
lowers engineering cost, and reduces rework. Evaluating a system's performance, functionality,
and robustness in a simulation environment avoids the time and expense of developing hardware

and software for each design iteration. Simulating the performance of a design can be
straightforward (though sometimes tedious, depending on the complexity of the system being
developed), with mathematical models for the hardware components of the system (plant
models) and control algorithms for embedded controllers.

Model-Based Systems Engineering has been widely accepted in the automotive industry.
Designing and studying the performance of a system in the virtual environment of a computer
system simulation

• Provides a math-based environment for thorough multidisciplinary integration and testing
prior to hardware builds;

• Permits sorting technologies quickly so as to reduce hardware build iterations;
• Promotes parallel and integrated virtual development of control systems and hardware;
• Delivers better-integrated initial designs that balance fuel economy, emissions, and

drivability requirements;
• Provides methods and tools for comparing/evaluating technologies; and
• Facilitates efficient, seamless linking from research to production to maximize reuse of

work products.

System Simulation
Model-Based Systems Engineering calls for development of a complete system simulation,
which includes plant models that represent the dynamic behavior of the physical system(s),
models of the sensors and actuators that are used to connect the physical systems to their
controllers, and models of the controller hardware and algorithm software. This system
simulation environment is then used to perform various types of studies, including the following:

• Analysis of system performance and fuel economy;
• Analysis of variation and robustness; and
• Detailed control algorithm design

The structure of a system simulation is depicted in Figure 1:

Figure 1 – System simulation

Challenges
Developing a complete system simulation for a ground vehicle application can be a challenging
task. Complex plant models, models of sensors and actuators, algorithm models, and production
software modules must be connected. Some of the subsystem blocks have hundreds of inputs and
outputs, which makes manually connecting them a time-consuming and error-prone process. To
obtain a complete system model, the functionalities of all the control algorithms must be
included—but in many cases, models of all the algorithms are not available and compiled
controller production code must be used.

For a system simulation to be effective and structured for the task at hand, users must be able to
readily select the level of fidelity for each of the subsystem models. There also must be a
mechanism to manage all of the artifacts of the system simulation, including the models
themselves, initialization and calibration files to be used with the models, test cases and drive
cycles used to exercise the system simulation, and results files. These artifacts also need to be
configuration-managed and version-controlled.

Autonomie Description and Features
The most important aspect of a tool that supports full MBSE is flexibility. A model is only useful
and reusable if it can quickly be configured for any number of different usages. Therefore, it is
not useful to version a full vehicle model, but rather to break that model down into smaller
pieces, managing the individual models independently. The models can then be reused in the
widest possible fashion, from research to production, because they can be easily recombined in
infinite combination with any other model. Autonomie provides several key features to facilitate
this flexibility.

The first feature is Autonomie’s open architecture, which allows any configuration of groupings
of models, with recursive levels of subsystems. This feature is essential. Groupings of models,
along with initialization, scaling, and processing files as well as any tuned or overwritten
parameter values, can be lumped together as a “system.” This capability allows the systems to be
abstracted and treated as black boxes; they can be independently validated, shared,
configuration-managed, and swapped out in the vehicle model by users who are not familiar with
the details of these systems, independently of context. This capability allows experts to design
and optimize their individual systems to be reused by non-experts, naturally leading to better
modelling throughout the MBSE process.

For example, a battery expert can create several battery plant and control models, varying from
high-level, lookup-table models to very detailed, high-fidelity models (even using expert tools
where necessary, such as AMESim, Saber, or GTPower). Using Autonomie, the battery expert
could run the models through processes to test inputs and outputs, compare the models to test
data from actual batteries, and tune the model parameters using optimization routines. He might
also develop specialized systems to handle connections to hardware, such as Component –in-the-
Loop (CIL) or Hardware-in-the-Loop (HIL). Once the expert was satisfied with the system (or
set of systems), he could share it (i.e., via source control).

Similarly, other experts would develop their systems in parallel, e.g., an engine expert would
develop a range of engine systems. Separate vehicle integration experts could then pick and
choose among these systems to develop custom vehicle models for any application. So long as a
tool such as Autonomie is used, the expert can quickly assemble high-level, technology-sorting
vehicle models, low-level vehicle models to investigate detailed phenomena, distributed models
for co-simulation, or anything in between. This approach is depicted in Figure 2.

Figure 2 – Autonomie seamlessly integrates individual systems

Because Autonomie allows the flexibility to organize the systems in any way, an organization
can be selected that most easily allows for the substitution of systems. Usually, this selection is
achieved by echoing the structure of the actual vehicle. Separating the models into systems that
represent components of the vehicle, and co-locating the appropriate controller models with the
appropriate plant models, allows for the maximum reuse and “swappability” of the various
systems.

For example, if an engine system is itself composed of a plant and a controller system, it can be
applied to a range of uses. The entire engine system could be replaced with a system capable of
running CIL. Alternatively, the plant system could be swapped for an HIL system running with a
Simulink controller model. Or the plant system could be replaced with a more or less detailed
system appropriate to the level of detail of the study; either one that further breaks down the
models into additional, swappable subsystems, or perhaps one developed in an expert modeling
tool. Finally, just the controller system could be swapped for a system containing compiled code
for a Software-in-the-Loop (SIL) simulation (see Figure 3).

Figure 3 - Autonomie facilitates swappable subsystems for maximum model reusability

Of course, flexibility doesn’t just happen; Autonomie provides three more interrelated key
features that enable system plug-and-play: 1) automatic model connections, 2) compatibility
checking, and 3) automatic model building.

With increasing model complexity comes an increasing number of connections between models.
Connecting these models is time-consuming and error-prone, making the swapping of models a
daunting task. Autonomie automates this task by routing the correct information to the correct
model ports without user interaction. If the correct signal cannot be found for automatic routing,
the user interface provides a simple way to select the proper signal and to save that information
for later reuse.

This mechanism is dependent on Autonomie’s robust compatibility checking, which ensures that
all inputs are satisfied in the system by compatible signals. Without this second key feature,
automatically connecting any possible system would be impossible. For example, if a very
detailed plant model is selected without the corresponding level of detail in the controller model,
then the plant model will most likely be missing the inputs required to exercise it. Or a detailed

engine system may require a correspondingly detailed transmission system to provide the correct
feedback.

Autonomie puts it all together with the third key feature: automatic model building. Without this
feature, all the rest is meaningless. The automatic model-building algorithm assembles the
individual systems into a single integrated model without requiring the user to do this tedious
work by hand.

Model-Based Systems Engineering is only as good as the models selected for the simulation. To
this end, it is very important to test and validate models. Autonomie provides capabilities that
facilitate this task too.

Autonomie allows systems to be simulated at any level, from individual plant models, to
collections of systems representing entire components, to entire vehicles. Component-only and
model test bench processes provide user interfaces to quickly exercise model inputs and check
outputs before testing an integrated vehicle on a standard or user-created drive cycle. This
capability allows multiple points of validation, as each level of integration can be tested.
Therefore, it is possible to design and optimize individual models, sets of models, or entire
vehicles.

Autonomie also provides the ability to import test data and compare them with simulation data,
which is critical for model validation.

Just as Autonomie allows for the construction of a full vehicle model from its constituent parts,
Autonomie also allows the constructing of processes to exercise the models. Depending on the
model and what you want to do with it, different steps may be required to exercise it. For
example, testing an individual model’s inputs and outputs is different from testing a complete,
self-contained system, and performing an SIL or HIL process would be different from running a
drive cycle. Users can modify existing processes by adding steps or providing modifiers, or they
can provide a process of their own.

Autonomie provides default processes and process modifiers to aid in design, such as parametric
study and optimization routines, as well as distributed computing functionalities to aid in batch-
running large sets of simulations. With the use of modern computing hardware, typically
computationally expensive optimization problems such as multi-parameter tuning, component
sizing, or Monte Carlo analysis are possible through Autonomie.

Finally, Autonomie provides advanced data analysis capabilities to quickly determine the results
of a simulation by looking at raw numbers or plotting signals, either for individual runs or for

side-by-side comparisons of multiple runs of simulation and/or test data. This capability allows
for efficient verification and validation of models as well as the quick identification of optimum
parameter values.

Application Examples

Application of Autonomie to Software-in-the-Loop (SIL) Simulations
To build a complete system simulation, the functionalities of all components and subsystems
must be included. In many cases, although plant models are already available or can be readily
developed, models of many control algorithms are not available, and the only representation of
the algorithm functionality is contained in existing software. In these cases, a full system
simulation can usually be performed only when a complete software build has been created and
loaded into the target embedded controller. Then the control algorithm software can be tested in
an HIL system, where the controller with its application software is connected to a real-time
computer system that runs a simulation of the plant model(s) representing the physical system to
which the controller will eventually be connected.

However, it is now possible to use compiled production code in the virtual environment. In this
so-called SIL technique, compiled production controller code is incorporated into the simulation
environment, thus allowing the inclusion of algorithm functionality for which no simulation
models exist. This approach allows a system simulation to be constructed even when models of
all the control algorithms are not available, thus yielding what may be referred to as a virtual HIL
simulation. The system simulation includes an SIL block that incorporates a compiled version of
the production software used in the actual embedded controllers.

Figure 4 shows the SIL-based system simulation in the Autonomie environment.

Figure 4 – Autonomie SIL-based system simulation

The controller model structure, shown in Figure 5, includes the following:

• A block emulating the functionality of the embedded-controller real-time operating system

(RTOS), which schedules the execution of the tasks in the compiled software and any
attached algorithm models (this RTOS block consists of a behavioral model of the actual
RTOS used in the embedded controller, and is implemented in Simulink);

• A Controller Area Network communication block to supply serial data signals to the
compiled software;

• An algorithm model block that contains any algorithms under development;
• A hardware I/O (HWIO) block that contains behavioral models of the HWIO functions in the

controller; and
• An SIL block that permits inclusion of the compiled production code into the simulation

model. An SIL block is required for each controller included in the system, thus allowing for
multiple Embedded Control Units (ECUs) to be represented.

Figure 5 – Controller model structure

Application of Autonomie to Component-in-the-Loop (CIL)
It is difficult to obtain accurate models of certain phenomena (e.g., thermal behavior, emissions,
after-treatment) that can run quickly enough for a system simulation tool. In such cases, real
hardware components or subsystems are combined with real-time software simulation models of
the rest of the powertrain for vehicle system analysis. This process is commonly known as
component-in-the-loop (CIL) or component-hardware-in-the-loop [10]. Vehicle control strategies
(energy management), which need feedback or inputs from such phenomena (e.g., cold start
control), are evaluated using CIL. Another potential application of CIL is to evaluate prototype
components in a vehicle system environment, where a mathematical model of the prototype
model has yet to be developed because research and development of the component are ongoing
[11].

The flexibility provided by Autonomie can be used to perform Model-Based Design Experiments
(MBDE, a subset of MBSE) with CIL. Argonne National Laboratory has used the MBDE
process for CIL in numerous experiments pertaining to advanced vehicle technologies, which
needed a real battery [12] or a real engine [13].

In Autonomie, a separate configuration has been created for CIL experiments, which enables
seamless transition between simulation and CIL. The generic component system configuration
for any component is shown in Figure 6.

Figure 6 – Generic component configuration in Autonomie

This configuration is replaced with a configuration suitable for a CIL experiment, as shown in
Figure 7.

Figure 7 – Component configuration for component-in-the-loop experiments

The experiment control system has specific subsystems that enable the user to test the hardware
component outside the vehicle environment and write low-level control code for the hardware
component. The component system is essentially made up of I/O blocks that interface with the
actual hardware component. The experiment survey monitors feedback signals and initiates
proper action (including Estop) on the basis of the status of the feedback signal. Details of the
CIL configuration are available in Reference [14].

Once the CIL system has been developed, the user can move from the simulation world to CIL
by simply dragging the CIL configuration onto the appropriate component. The code can then be
deployed to any real-time operating system for CIL experiments. Similarly, the user can get back
to the simulation by simply dragging the default Autonomie component configuration (Figure 6)
back onto the component.

This seamless transition between CIL and simulation enables an MBSE process, as shown in
Figure 8.

Model-Based Systems Engineering was used to evaluate the fuel economy potential of a power-
split PHEV, with a real engine (Engine-in-the-Loop [EIL]) to take emissions into account. Two
parameters (delta SOC and wheel power threshold at which the engine turns ON) were varied in
order to achieve the best possible fuel economy while maintaining emissions below a predefined
standard. Figure 8 highlights the key steps in the MBSE process, which are possible because of
the flexibility provided by Autonomie. The default Autonomie power-split PHEV vehicle was
run with the real engine to identify control modifications needed to reduce emissions (torque
shaping, engine warm-up). Once the controls were modified, a large simulation study was
conducted with the modified controls to determine the values of delta_SOC and wheel power
threshold that provided the maximum fuel economy for the vehicle. Since only the engine
configuration changes in the transition from CIL to simulation, it is relatively easy to change
from CIL to simulation. Also, because the only difference between the CIL and simulation
versions is the real/virtual engine, the model can be easily adjusted to match hardware behavior.

Figure 8 – MBSE process for an engine-in-the-loop experiment

Figure 9 shows results for fuel consumption as a function of delta SOC and engine-ON
threshold. As can be seen from the figure, there is a minimum at a delta SOC of around 0.25 and
an engine-ON threshold of around 12 kW, which gives the lowest fuel consumption or the
highest fuel economy.

 Figure 9 – Fuel consumption as a function of delta SOC and engine-ON threshold

Certain simulation results (including the minimum and certain results around it) were chosen for
final validation with hardware (EIL), and to make sure that the emissions for the minimum were
still within predefined limits (Figure 10). This is the final step of the MBSE process.

Figure 10 – Validation of simulation results with EIL (last step of MBSE process)

The MBSE approach, highlighted above for the EIL experiment, is possible because of the
seamless transition between simulation and CIL. It greatly reduces the number of tests done on
hardware, since most of the design matrix is explored in simulation.

Summary and Conclusions

Performance and Fuel Economy Studies
Autonomie’s automated model-building and simulation process capabilities are used extensively
for vehicle performance and fuel economy studies. It is easy and straightforward to set up
simulation runs that will allow the user to perform comparative analyses of different vehicle
architectures and component technologies, in order to do a trade-off study of multiple designs.
Autonomie is also used to run component sizing studies and determine, for example, the best
battery size and capacity for a Hybrid-Electric Vehicle.

The ability to readily configure vehicles for simulation runs, and then perform those runs by
running predefined or customized processes, greatly reduces the burden on the user to set up and
execute simulation runs of dozens or hundreds of vehicles in order to obtain the desired analysis
results.

Design Optimization
In addition to being able to run parametric studies, Autonomie also supports the integration of
advanced optimization algorithms that enable a user to perform multi-objective optimization
studies to determine the best vehicle architecture and component specifications to meet overall
design requirements that cover a variety of operational scenarios. These optimization runs can
also take into account the variation that occurs in vehicle operation because of manufacturing
variances, environmental changes, and product aging. Optimizing the system across product life-
cycle variations enhances the development of robust designs.

Control Design Applications
The methods provided by Autonomie enable a control system design capability that was
heretofore very difficult to achieve. Control algorithm development in the context of a complete
system simulation provides many advantages that result in high-quality, robust control systems.
Engineers are able to account for interactions among the many functions, subsystems, and
controllers that comprise modern automotive controls, and to study the effects of variation on the
system's robustness. The approach developed cooperatively between GM and Argonne National
Laboratory overcomes the challenges and difficulties of constructing a complete system
simulation.

The Autonomie software developed at Argonne facilitates management of the models, including
automatic interconnection of the subsystems. Autonomie provides a complete environment for
assembling, building, running, and analyzing complete vehicle (or vehicle subsystem) models.
The SIL capability developed at GM allows the user to include a complete representation of
production control algorithm software, thus permitting the simulation to include the functionality
of algorithms for which no simulation models exist. The SIL facility provides complete
flexibility in scheduling and executing the production code tasks, as well as mixing and matching
them with algorithm models represented in Simulink. This flexibility permits the engineer to run
the same tests and experiments that are normally performed on an HIL simulator, and provides
the capability afforded by a rapid controller prototyping system running in bypass mode.

Autonomie is based on a MATLAB/Simulink platform, which may encounter computer
performance limitations for very large models. The SIL feature avoids many of these
performance issues by including compiled C code for all production control algorithms except
the one under development. Even so, there may be situations where simulation speed is adversely
impacted by the model size. In such cases, co-simulation technology may be employed to
distribute the computing workload among multiple processors or computers.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government.

REFERENCES

1. Michaels, L. (Argonne National Laboratory), Kropinski, M. (GM), “Development of
Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation,”
SAE 2012-01-9008, SAE Convergence Conference, October 2012.

2. Michaels, L., et al. (Argonne National Laboratory), Kropinski, M., et al. (GM), “Model-
Based Systems Engineering and Control System Development via Virtual Hardware-in-the-
Loop Simulation,” SAE 2010-01-2325, SAE Convergence Conference, October 2010.

3. Argonne National Laboratory, Autonomie Documentation, Argonne, IL, 2009.
4. Argonne National Laboratory, Autonomie Presentation,

http://www.transportation.anl.gov/pdfs/MC/578.pdf, 2009.
5. Smith, P., Prabhu, S., Friedman, J. (The MathWorks), “Best Practices for Establishing a

Model-Based Design Culture,” SAE 2007-01-0777, SAE World Congress, 2007.
6. Tung, J. (The MathWorks), “From Specification and Design to Implementation and Test,”

Embedded World 2004 Conference, Automotive Digest, April 2004,
http://www.mathworks.com/company/newsletters/auto_digest/april04/embed_world2004.ht
ml.

7. Matthews, O., Michaels, L. (GM), “GM Powertrain Automatic Code Generation Process,”
Presentation at MathWorks International Automotive Conference, June 2005.

8. Vijayagopal, R., et al. (Argonne National Laboratory), “Automated Model Based Design
Process to Evaluate Advanced Component Technologies,” SAE 2010-01-0936, SAE World
Congress, 2010.

9. FreedomCAR and Fuel Partnership, United States Council for Automotive Research
(USCAR), United States Department of Energy,
http://www.uscar.org/guest/view_partnership.php?partnership_id=1.

10. Shidore, N., Lohse-Busch, H., Smith, R.W., Bohn, T. (Argonne National Laboratory),
“Component and Subsystem Evaluation in a Systems Context Using Hardware in the Loop,”
Presentation at IEEE Vehicle Power and Propulsion Conference, 2007.

11. Shidore, N., Ciatti, S., et al. (Argonne National Laboratory), “Evaluation of the Fuel
Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop,”
Presentation at Department of Energy’s 2013 Hydrogen Program and Vehicle Technologies
Annual Merit Review, May 2013.

12. Shidore, N. Bohn, T. (Argonne National Laboratory), “Evaluation of Cold Temperature
Performance of the JCS-VL41M PHEV Battery Using Battery HIL,” SAE 2008-01-1333,
SAE World Congress, April 2008.

13. Shidore, N., Ickes, A., Wallner, T., Rousseau, A. (Argonne National Laboratory),
“Evaluation of Ethanol Blends for PHEVs Using Engine in the Loop,” Presentation at the
IEEE Vehicle Power and Propulsion Conference, 2011.

14. http://www.autonomie.net/overview/presentations_CIL.html.

CONTACT INFORMATION
ARGONNE NATIONAL LABORATORY
Aymeric Rousseau
(630) 252-7261
Email: arousseau@anl.gov

http://www.uscar.org/guest/view_partnership.php?partnership_id=1
http://www.autonomie.net/overview/presentations_CIL.html
mailto:arousseau@anl.gov

